Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Solution
Let I = `int(x^n - 1)/sqrt(1 + 4x^n).dx`
Put xn = t
∴ nxn–1 dx = dt
∴ xn–1 dx = `dt/n`
∴ I = `int (1)/sqrt(1 + 4t).dt/n`
= `(1)/nint(1 + 4t)^(-1/2)dt`
= `1/n.((1 + 4t)^(1/2))/(1/2) xx (1)/(4) + c`
= `(1)/(2n).sqrt(1 + 4x^n) + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Write a value of
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
`int sqrt(1 + "x"^2) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int x^3"e"^(x^2) "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int sqrt(x^2 - a^2)/x dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int (logx)^2/x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).