Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Solution
Let I = `int (1)/(4 - 5cosx).dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2dt)/(1 + t^2) and cosx = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(4 - 5((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(4(1 + t^2) - 5(1 - t^2)).(2dt)/(1 + t^2)`
= `int (2dt)/(9t^2 - 1)`
= `(2)/(9) int (1)/(t^2 - 1/9)dt`
= `(2)/(9) int (1)/(t^2 - (1/3)^2)dt`
= `(2)/(9) xx (1)/(2 xx 1/3) log|(t - 1/3)/(t + 1/3)| + c`
= `(1)/(3) log |(3tan(x/2) - 1)/(3tan (x/2) + 1)| + c`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate :`intxlogxdx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`1/(1 - tan x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t.x:
cos8xcotx
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
`int logx/(log ex)^2*dx` = ______.
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int (sin4x)/(cos 2x) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int dx/(1 + e^-x)` = ______
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int cos^3x dx` = ______.
Write `int cotx dx`.
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
`int "cosec"^4x dx` = ______.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).