English

Integrate the following functions w.r.t. x : ∫14-5cosx.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`

Sum

Solution

Let I = `int (1)/(4 - 5cosx).dx`

Put `tan(x/2)` = t
∴ x = 2 tan–1 t

∴ dx = `(2dt)/(1 + t^2) and cosx = (1 - t^2)/(1 + t^2)`

∴ I = `int (1)/(4 - 5((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`

= `int (1 + t^2)/(4(1 + t^2) - 5(1 - t^2)).(2dt)/(1 + t^2)`

= `int (2dt)/(9t^2 - 1)`

= `(2)/(9) int (1)/(t^2 - 1/9)dt`

= `(2)/(9) int (1)/(t^2 - (1/3)^2)dt`

= `(2)/(9) xx (1)/(2 xx 1/3) log|(t - 1/3)/(t + 1/3)| + c`

= `(1)/(3) log |(3tan(x/2) - 1)/(3tan (x/2) + 1)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Evaluate :`intxlogxdx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`1/(1 - tan x)`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

\[\int\sqrt{9 - x^2}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x : x3 + x2 – x + 1


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


`int logx/(log ex)^2*dx` = ______.


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (sin4x)/(cos 2x) "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int (7x + 9)^13  "d"x` ______ + c


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


`int dx/(1 + e^-x)` = ______


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("d"x)/(x(x^4 + 1))` = ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


`int cos^3x  dx` = ______.


Write `int cotx  dx`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int "cosec"^4x  dx` = ______.


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×