English

Integrate the following functions w.r.t. x : sin4x.cos3x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : sin4x.cos3x

Sum

Solution

Let I = `int sin^4x.cos^3x dx`

= `int sin^4x.cos^2x.cos x dx`

= `int sin^4x (1 - sin^2x) cos x dx`

Put sin x = t
∴ cos x dx = dt

∴ I = `int t^4(1 - t^2)dt`

= `int (t^4 - t^6)dt`

= `int t^4 dt - int t^6 dt`

= `t^5/(5) - t^7/(7) + c`

= `(1)/(5)sin^5x - (1)/(7)sin^7 x + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

sec2(7 – 4x)


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(1+ log x)^2/x`


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x:

`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Evaluate the following integrals:

`int (7x + 3)/sqrt(3 + 2x - x^2).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int sin^-1 x`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int1/(4 + 3cos^2x)dx` = ______ 


`int (cos x)/(1 - sin x) "dx" =` ______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("d"x)/(x(x^4 + 1))` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate the following.

`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×