Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : sin4x.cos3x
Solution
Let I = `int sin^4x.cos^3x dx`
= `int sin^4x.cos^2x.cos x dx`
= `int sin^4x (1 - sin^2x) cos x dx`
Put sin x = t
∴ cos x dx = dt
∴ I = `int t^4(1 - t^2)dt`
= `int (t^4 - t^6)dt`
= `int t^4 dt - int t^6 dt`
= `t^5/(5) - t^7/(7) + c`
= `(1)/(5)sin^5x - (1)/(7)sin^7 x + c`.
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int sin^-1 x`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int1/(4 + 3cos^2x)dx` = ______
`int (cos x)/(1 - sin x) "dx" =` ______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(x(x^4 + 1))` = ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1)) dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).