English

Integrate the following functions w.r.t. x : e3xe3x+1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`

Sum

Solution

Let I = `int e^(3x)/(e^(3x) + 1).dx`

Put e3x + 1 = t.
∴ 3e3x dx = dt

∴ e3x dx = `dt/(3)`

∴ I = `int (1)/t.dt/(3)`

= `(1)/(3) int (1)/t dt`

= `(1)/(3)log|t| + c`

= `(1)/(3)log|e^(3x) + 1| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate :

`int(sqrt(cotx)+sqrt(tanx))dx`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int \log_e x\ dx\].

 


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


The value of \[\int\frac{1}{x + x \log x} dx\] is


\[\int x \sin^3 x\ dx\]

 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals:

`int (cos2x)/sin^2x dx` 


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following : `int sinx/(sin 3x).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


`int sqrt(1 + "x"^2) "dx"` =


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int sqrt(1 + sin2x)  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int dx/(1 + e^-x)` = ______


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×