English

Show that - Mathematics and Statistics

Advertisements
Advertisements

Question

 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`

Sum

Solution

Let I = `int _0^(pi/4) "log"(1+"tan""x")"dx"`

= `int _0^(pi/4) "log"(1+ "tan""x")"dx"`

`=int _0^(pi/4) "log"{1+"tan"(pi/4-"x")} "dx"`

`(because int _0^"a" "f" ("x") "dx" int "f"("a" -"x")"dx")`

`=int _0^(pi/4)"log"{1+(("tan"pi/4 - "tan""x"))/(1+"tan"pi/4"tan""x")} "dx"`

`=int _0^(pi/4) "log"{1+(1-"tan""x")/(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"{(1 + "tan""x" +1 -"tan""x")/(1 + "tan""x")}"dx"`

`=int _0^(pi/4) "log"(2/(1+"tan""x")) "dx"`

`=int _0^(pi/4) {"log" 2 -"log"(1+ "tan""x")} "dx"`

`=int _0^(pi/4) "log"2"dx" - int _0^(pi/4) "log" (1+"tan""x")"dx"`

`"I" = "log"2["x"]int _0^(pi/4) - "I"`

2I = `"log" 2 [pi/4-0]`

`"I" = pi/8 ."log"2`

` therefore int _0^(pi/4) "log"(1 +"tan""x")"dx" = pi/8"log"2`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`(1+ log x)^2/x`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


`int logx/(log ex)^2*dx` = ______.


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/("x" ("x" - 1))` dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


Evaluate: `int "e"^sqrt"x"` dx


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int sqrt(1 + sin2x)  "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int (cos2x)/(sin^2x)  "d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


`int dx/(2 + cos x)` = ______.

(where C is a constant of integration)


`int secx/(secx - tanx)dx` equals ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate:

`int(cos 2x)/sinx dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate the following.

`int1/(x^2+4x-5)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×