Advertisements
Advertisements
Question
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Solution
\[\left( e^{\text{ x log}_e a} + e^{\text{ a }\log_e x} \right)dx\]
\[\int\left( e^{ \text{ log a}^x} + e^{ \text{ log x}^a} \right) dx\]
\[ = \int \left( a^x + x^a \right)dx\]
\[ = \frac{a^x}{\log a} + \frac{x^{a + 1}}{a + 1} + C\]
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Write a value of\[\int \log_e x\ dx\].
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
`int sqrt(1 + "x"^2) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int x/(x + 2) "d"x`
`int sec^6 x tan x "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`