English

Write a Value of ∫ ( E X Log E a + E a Log E X ) D X - Mathematics

Advertisements
Advertisements

Question

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .

Sum

Solution

\[\left( e^{\text{ x   log}_e a} + e^{\text{ a }\log_e x} \right)dx\]
\[\int\left( e^{ \text{ log a}^x} + e^{ \text{ log x}^a} \right) dx\]
\[ = \int \left( a^x + x^a \right)dx\]
\[ = \frac{a^x}{\log a} + \frac{x^{a + 1}}{a + 1} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Very Short Answers [Page 197]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Very Short Answers | Q 23 | Page 197

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`1/(x + x log x)`


Integrate the functions:

`cos sqrt(x)/sqrtx`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of\[\int \log_e x\ dx\].

 


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


`int logx/(log ex)^2*dx` = ______.


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


`int 2/(sqrtx - sqrt(x + 3))` dx = ________________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int x/(x + 2)  "d"x`


`int sec^6 x tan x   "d"x` = ______.


If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×