English

Evaluate : ∫1/(sin^4x+sin^2xcos^2x+cos^4x)dx - Mathematics

Advertisements
Advertisements

Question

 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Solution

We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

Multiply the numerator and the denominator by sec4x, we have

`I=int(sec^4dx)/(tan^4x+tan^2x+1)`

`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`

Now substitute t=tanx;dt=sec2xdx

Therefore,

`I=int(1+t^2)/(t^4+t^2+1)dt`

`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`

`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`

`I=int(1+1/t^2)/((T-1/T)^2+3)dt`

Substitute `z=t-1/t; dz=(1+1/t^2)dt`

`I=int(dz)/(z^2+3)`

`I=int(dz)/(z^2+(sqrt3)^2)`

`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`

`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`

`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`

`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`

 

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

RELATED QUESTIONS

Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int x^x (1 + logx)  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


If f'(x) = `x + 1/x`, then f(x) is ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Write `int cotx  dx`.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int(1+ x + x^2/(2!)) dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate `int(1 + x + x^2 / (2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×