Advertisements
Advertisements
Question
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Solution
We need to evaluate `int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
`Let I=int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Multiply the numerator and the denominator by sec4x, we have
`I=int(sec^4dx)/(tan^4x+tan^2x+1)`
`I=int(sec^2x xx sec^2x dx)/(tan^4s+tan^2x+1)`
Now substitute t=tanx;dt=sec2xdx
Therefore,
`I=int(1+t^2)/(t^4+t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2+1)dt`
`I=int(1+1/t^2)/(t^2+1/t^2-2+2+1)dt`
`I=int(1+1/t^2)/((T-1/T)^2+3)dt`
Substitute `z=t-1/t; dz=(1+1/t^2)dt`
`I=int(dz)/(z^2+3)`
`I=int(dz)/(z^2+(sqrt3)^2)`
`I=1/sqrt3 tan^(-1)(z/sqrt3)+c`
`I=1/sqrt3tan^(-1)((t-1/t)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-1/tanx)/sqrt3)+c`
`I=1/sqrt3tan^(-1)((tanx-cotx)/sqrt3)+c`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`((x+1)(x + logx)^2)/x`
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int x^x (1 + logx) "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
If f'(x) = `x + 1/x`, then f(x) is ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Write `int cotx dx`.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int(1+ x + x^2/(2!)) dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2 / (2!))dx`