English

Integrate the functions: tan2(2x – 3) - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

tan2(2x – 3)

Sum

Solution

Let `I = int tan^2 (2x - 3) dx`

`= int [sec^2 (2x - 3) - 1]dx`

`= int sec^2 (2x - 3)dx - int 1 dx`

`= sec^2 (2x - 3) dx - x + C_1`

I = I1 - x + C1

Where, `I_1 = int sec^2 (2x - 3) dx.`

Put 2x - 3 = t

⇒ 2dx = dt

⇒ `I_1 = 1/2 int sec^2 t  dt`

⇒ `I_1 = 1/2 tan t + C_2`

`= 1/2 tan (2x - 3) + C_2`

`I = I_1 - x + C_1`

= `1/2 tan (2x - 3) - x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 21 | Page 305

RELATED QUESTIONS

Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^{\text{ log  sin x  }}\text{ cos x}. \text{ dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Integrate the following with respect to the respective variable:

`x^7/(x + 1)`


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Fill in the Blank.

To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

`int sqrt(1 + x^2) *x  "d"x = 1/3(1 + x^2)^(3/2) + "c"`


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate:

`int sqrt((a - x)/x) dx`


`int x^2/sqrt(1 - x^6)dx` = ______.


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×