Advertisements
Advertisements
Question
Integrate the functions:
tan2(2x – 3)
Solution
Let `I = int tan^2 (2x - 3) dx`
`= int [sec^2 (2x - 3) - 1]dx`
`= int sec^2 (2x - 3)dx - int 1 dx`
`= sec^2 (2x - 3) dx - x + C_1`
I = I1 - x + C1
Where, `I_1 = int sec^2 (2x - 3) dx.`
Put 2x - 3 = t
⇒ 2dx = dt
⇒ `I_1 = 1/2 int sec^2 t dt`
⇒ `I_1 = 1/2 tan t + C_2`
`= 1/2 tan (2x - 3) + C_2`
`I = I_1 - x + C_1`
= `1/2 tan (2x - 3) - x + C`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : cos7x
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int (log x)/(log ex)^2` dx = _________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate:
`int sqrt((a - x)/x) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`intx sqrt(1 +x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`