Advertisements
Advertisements
Question
Integrate the functions:
`sin x/(1+ cos x)`
Solution
Let `I = int (sin x)/(1 + cos x) dx`
Put 1 + cos x = t
⇒ -sin x dx = dt
∴ `I = - int dt/t = -log |t| + C `
= - log |1 + cos x| + C
`= log (1/ (|1 + cos x|)) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
`int(log(logx))/x "d"x`
`int sin^-1 x`dx = ?
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int cos^3x dx` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate `int(1+ x + x^2/(2!)) dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate `int (1)/(x(x - 1))dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`