English

Integrate the functions: sinx1+cosx - Mathematics

Advertisements
Advertisements

Question

Integrate the functions:

`sin x/(1+ cos x)`

Sum

Solution

Let `I = int (sin x)/(1 + cos x) dx`

Put  1 + cos x = t

⇒ -sin x dx = dt

∴ `I = - int dt/t = -log |t| + C `

= - log |1 + cos x| + C

`= log (1/ (|1 + cos x|)) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.2 [Page 305]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.2 | Q 30 | Page 305

RELATED QUESTIONS

Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of

\[\int e^x \sec x \left( 1 + \tan x \right) \text{ dx }\]

Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate the following.

`int "x"^3/sqrt(1 + "x"^4)` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


`int(log(logx))/x  "d"x`


`int sin^-1 x`dx = ?


`int (f^'(x))/(f(x))dx` = ______ + c.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int cos^3x  dx` = ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate `int(1+ x + x^2/(2!)) dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate `int (1)/(x(x - 1))dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×