Advertisements
Advertisements
Question
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Solution
Let `I = int (cos x)/sqrt(1 + sin x)` dx
Put 1 + sin x = t
cos x dx = dt
∴ `I = int dt/sqrt(1 + t) = (1 + t)^(1/2 +1)/(1/2 + 1) + C`
`= 2 (1 + t)^(1/2) + C`
`= 2 sqrt(1 + sin x + C)`
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
cot x log sin x
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/(cos x - sin x)` dx = _______________
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int secx/(secx - tanx)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`