Advertisements
Advertisements
Question
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Solution
\[\int \sqrt{9 + x^2} \text{ dx }\]
\[ = \int \sqrt{3^2 + x^2} dx \left( \because \sqrt{a^2 + x^2} = \frac{x}{2}\sqrt{x^2 + a^2} + \frac{a^2}{2}\text{ ln }\left| x + \sqrt{x^2 + a^2} \right| \right)\]
\[ = \frac{x}{2}\sqrt{9 + x^2} + \frac{9}{2}\text{ ln }\left| x + \sqrt{9 + x^2} \right| + C\]
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Fill in the Blank.
To find the value of `int ((1 + log "x") "dx")/"x"` the proper substitution is ________
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int log ("x"^2 + "x")` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
Evaluate `int 1/("x"("x" - 1)) "dx"`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`