Advertisements
Advertisements
Question
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Solution
\[\int \sqrt{4 - x^2} dx\]
\[ = \int \sqrt{2^2 - x^2} \text{ dx }\]
\[ = \frac{x}{2}\sqrt{2^2 - x^2} + \frac{2^2}{2} \sin^{- 1} \left( \frac{x}{2} \right) + C \left( \because \sqrt{a^2 - x^2} = \frac{x}{2}\sqrt{a^2 - x^2} - \frac{a^2}{2} \sin^{- 1} \frac{x}{a} + C \right)\]
\[ = \frac{x}{2}\sqrt{4 - x^2} + 2 \sin^{- 1} \left( \frac{x}{2} \right) + C\]
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Evaluate: `int 1/(x(x-1)) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
`int logx/x "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int cot^2x "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1+x+(x^2)/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`