Advertisements
Advertisements
Question
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Solution
Let I = `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Let 3x + 4 = `"A"[d/dx (2x^2 + 2x + 1)\ + "B"` ...(i)
3x + 4 = A(4x + 2) + B
∴ 3x + 4 = (4A)x + (2A + B)
Consider,
4A = 3 and 2A + B = 4
∴ A = `(3)/(4) and 2(3/4) + "B"` = 4
∴ B = `4- 3/2`
∴ B = `8 - 3/2`
∴ B = `(5)/(2)`
From (i),
(3x + 4) = `3/4 d/dx (2x^2 + 2x + 1) + 5/2` ...(ii)
The required integral is,
I = `int ((3/4.d/dx (2x^2 + 2x + 1) + 5/2)/(sqrt(2x^2 + 2x + 1))dx`
I = `3/4 int (d/dx (2x^2 + 2x + 1))/(sqrt(2x^2 + 2x + 1)) dx + 5/2 int 1/ (sqrt(2x^2 + 2x + 1))dx`
I = `3/4 . 2 . sqrt(2x^2 + 2x + 1) + 5/2 . 1/sqrt2 int 1/sqrt(x^2 + x + 1/2)dx + c_1` ...`int(f'(x))/sqrtf(x)dx = 2 sqrtf(x) + c`
I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/sqrt((x^2 + x + 1/4) + 1/2 - 1/4)dx + c_1`
I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) int 1/ sqrt((x + 1/2)^2 + (1/2)^2)dx + c_1`
I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt((x + 1/2)^2 + (1/2)^2)| + c_1 + c_2`
I = `3/2 sqrt(2x^2 + 2x + 1) + 5/(2sqrt2) log |(x + 1/2) + sqrt(x^2 + x + 1/2)| + c`
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int sin^3x cos^3x dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int1/(x(x-1))dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`
Evaluate:
`intsqrt(sec x/2 - 1)dx`