Advertisements
Advertisements
Question
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Solution
Let `I = int (sin x)/(1 + cos x)^2` dx
Put 1 + cos x = t
⇒ - sin x dx = dt
∴ `I = - int dt/t^2 = t^(-2 + 1)/(-2 + 1) + C`
`= 1/t + C`
`= 1/(1 + cos x) + C`
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
tan2(2x – 3)
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int 1/(xsin^2(logx)) "d"x`
`int x/(x + 2) "d"x`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int sin^-1 x`dx = ?
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
Evaluate `int (1+x+x^2/(2!))dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`