English

Evaluate `Int (X-1)/(Sqrt(X^2 - X)) Dx` - Mathematics

Advertisements
Advertisements

Question

Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`

Solution

Let I  = `int sqrt((x-1)/(sqrt(x^2 - x))) dx`

`:. x - 1 = A  d/dx (x^2- x) + B`

`x - 1 = A(2x -1) + B`

`1 = 2A => A = 1/2`

`-1 = -A+B => -1 = (-1)/2 + B => B = (-1)/2`

`I = int (1/2 (2x - 1)dx)/(sqrt(x^2 - x)) dx - int 1/2 dx/(sqrt(x^2 - x)) dx`

`= int  (1/2 (2x-1)dx)/(sqrt(x^2-x)) - 1/2 int (dx)/(sqrt((x - 1/2)^2 - (1/2)^2))`

`= 1/2 xx 2sqrt(x^2 - x) - 1/2 xx log|(x - 1/2) + sqrt((x- 1/2)^2 - (1/2)^2)| +C`

`= sqrt(x^2 - x) -1/2 log |x - 1/2 + sqrt(x^2 - x)| + C`

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March) Set 1

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`sqrt(ax + b)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`(1+ log x)^2/x`


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t.x:

cos8xcotx


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×