English

Evaluate the following integrals : ∫sin2xcosxdx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following integrals : `int (sin2x)/(cosx)dx`

Sum

Solution

`int (sin2x)/(cosx)dx = int(2sinx cosx)/cosx dx`

= `2 int sin x dx`
= – 2 cos x + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Find `intsqrtx/sqrt(a^3-x^3)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`1/(x(log x)^m),  x > 0, m ne 1`


Integrate the functions:

`cos x /(sqrt(1+sinx))`


Integrate the functions:

cot x log sin x


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`(1+ log x)^2/x`


Solve: dy/dx = cos(x + y)


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Evaluate the following integrals:

`int(2)/(sqrt(x) - sqrt(x + 3)).dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int  (1)/(x^2 + 8x + 12).dx`


Evaluate the following : `(1)/(4x^2 - 20x + 17)`


Evaluate the following:

`int (1)/sqrt((x - 3)(x + 2)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Choose the correct options from the given alternatives :

`int (e^(2x) + e^-2x)/e^x*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int (log x)/(log ex)^2` dx = _________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int logx/x  "d"x`


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


`int secx/(secx - tanx)dx` equals ______.


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`intx sqrt(1 +x^2)  dx`


`int (cos4x)/(sin2x + cos2x)dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×