Advertisements
Advertisements
Question
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Solution
\[\int \left( \frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} \right)dx\]
\[ \Rightarrow \int \frac{\left( \sin x + \cos x \right)dx}{\sqrt{\sin^2 x + \cos^2 x + 2 \sin x \cos x}}\]
\[ \Rightarrow \int \frac{\left( \sin x + \cos x \right)dx}{\sqrt{\left( \sin x + \cos x \right)^2}}\]
\[ \Rightarrow \int dx\]
\[ \Rightarrow x + C\]
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(x(log x)^m), x > 0, m ne 1`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int a^x e^x \text{ dx }\]
Integrate the following w.r.t. x : x3 + x2 – x + 1
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int x/(x + 2) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
Write `int cotx dx`.
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`