Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Solution
Let I = `int 1/(sqrt("x"^2 -8"x" - 20))` dx
`= int 1/(sqrt ("x"^2 - 2 * 4"x" + 16 - 16 - 20))` dx
`= int "dx"/sqrt(("x - 4")^2 - 36)` dx
`= int "dx"/(sqrt(("x - 4")^2 - 6^2))` dx
`= log |("x - 4") + sqrt(("x - 4")^2 - 6^2)|` + c
∴ I = `log |("x - 4") + sqrt("x"^2 - 8"x" - 20)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Evaluate the following integrals:
`int (cos2x)/sin^2x dx`
Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following.
`int 1/("x" log "x")`dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate: `int "x" * "e"^"2x"` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int "cosec"^4x dx` = ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (1 + x + x^2/(2!)) dx`