Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
उत्तर
Let I = `int 1/(sqrt("x"^2 -8"x" - 20))` dx
`= int 1/(sqrt ("x"^2 - 2 * 4"x" + 16 - 16 - 20))` dx
`= int "dx"/sqrt(("x - 4")^2 - 36)` dx
`= int "dx"/(sqrt(("x - 4")^2 - 6^2))` dx
`= log |("x - 4") + sqrt(("x - 4")^2 - 6^2)|` + c
∴ I = `log |("x - 4") + sqrt("x"^2 - 8"x" - 20)|` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Write a value of
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
`int sqrt(1 + "x"^2) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int ("d"x)/(x(x^4 + 1))` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`