Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
उत्तर
Let I = `int (10x^9 10^x.log10)/(10^x + x^10).dx`
Put 10x + x10 = t
∴ (10x. log 10 + 10x9).dx = dt
∴ I = `int(1)/t dt` = log | t | + c
= log | 10x + x10 | + c.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`1/(1 + cot x)`
Integrate the functions:
`1/(1 - tan x)`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int\left( e^{x \log_e \text{ a}} + e^{a \log_e x} \right) dx\] .
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following function w.r.t. x:
x9.sec2(x10)
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: `int log ("x"^2 + "x")` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int x^x (1 + logx) "d"x`
`int cot^2x "d"x`
`int cos^7 x "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int sec^6 x tan x "d"x` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int1/(x(x - 1))dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).