Advertisements
Advertisements
प्रश्न
`int x^x (1 + logx) "d"x`
उत्तर
Since `"d"/("d"x)(x^x)` = xx (1 + log x),
`int x^x (1 + log x) "d"x` = xx + c
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Evaluate: `int sqrt(tanx)/(sinxcosx) dx`
Integrate the functions:
`(2x)/(1 + x^2)`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sin x/(1+ cos x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(2"x" + 3"x" log"x")` dx
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
`int(5x + 2)/(3x - 4) dx` = ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
`int secx/(secx - tanx)dx` equals ______.
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).