Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I }= \int \left( e^{2 x^2 + \ln x} \right)dx\]
\[ = \int \left( e^{2 x^2} \times e^{ \text{ ln x}} \right)dx\]
\[ = \int e^{2 x^2} . x \text{ dx}\]
\[\text{ Let 2}\ x^2 = t\]
\[ \Rightarrow \text{ 4x dx} = dt\]
\[ \Rightarrow\text{ x dx} = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int e^t dt\]
\[ = \frac{1}{4} e^t + C\]
\[ = \frac{1}{4} e^{2 x^2} + C \left( \because t = 2 x^2 \right)\]
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
cot x log sin x
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Evaluate `int (3"x"^2 - 5)^2` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 20"x" + 17)` dx
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (cos2x)/(sin^2x) "d"x`
`int cos^7 x "d"x`
`int(log(logx))/x "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
`int 1/(sin^2x cos^2x)dx` = ______.
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`