Advertisements
Advertisements
प्रश्न
Evaluate `int (3"x"^2 - 5)^2` dx
उत्तर
Let I = `int (3"x"^2 - 5)^2` dx
`= int (9"x"^4 - 30"x"^2 + 25)` dx
`= 9 int "x"^4 "dx" - 30 int "x"^2 "dx" + 25 int "dx"`
`= 9 ("x"^5/5) - 30 ("x"^3/3)` + 25x + c
∴ I = `9/5 "x"^5 - 10"x"^3 + 25"x" + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sec2(7 – 4x)
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : tan5x
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
Evaluate: `int "x" * "e"^"2x"` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
`int sec^6 x tan x "d"x` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int1/(x(x - 1))dx`