Advertisements
Advertisements
प्रश्न
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
उत्तर
Let `x^(3/2)` = t
`\implies` dt = `3/2 x^(1/2) dx`
`int sqrt(x/(1 - x^3))dx = 2/3 int dt/sqrt(1 - t^2)`
= `2/3 sin^-1 (t) + c`
= `2/3 sin^-1 (x^(3/2)) + c`, where 'c' is an arbitrary constant of integration.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`(log x)^2/x`
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "e"^sqrt"x"` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int(5x + 2)/(3x - 4) dx` = ______
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate the following.
`int 1/(x^2 + 4x - 5)dx`
`int dx/((x+2)(x^2 + 1))` ...(given)
`1/(x^2 +1) dx = tan ^-1 + c`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`