हिंदी

Evaluate: π∫0π4log(1+tanx)dx. - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate: `int_0^(π/4) log(1 + tanx)dx`.

योग

उत्तर

Let I = `int_0^(π/4) log_e (1 + tan x)dx`  ...(i)

`\implies` I = `int_0^(π/4) log_e (1 + tan(π/4 - x))dx`, 

Using `int_0^a f(x)dx = int_0^a f(a - x)dx`

`\implies` I = `int_0^(π/4) log_e (1 + (1 - tanx)/(1 + tanx))dx`

= `int_0^(π/4) log_e (2/(1 + tanx))dx`

= `int_0^(π/4) log_e 2dx - I`     ...(Using ...(i))

`\implies` 2I = `π/4 log_e 2`

`\implies` I = `π/8 log_e 2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Board Sample Paper

संबंधित प्रश्न

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Find `dy/dx, if y = cos^-1 ( sin 5x)`


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^{pi/2} log(tanx)dx` = ______


`int_2^3 x/(x^2 - 1)` dx = ______


`int_-9^9 x^3/(4 - x^2)` dx = ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______ 


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


`int_0^1|3x - 1|dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×