Advertisements
Advertisements
प्रश्न
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
उत्तर
Let I = `int_0^(π/4) log_e (1 + tan x)dx` ...(i)
`\implies` I = `int_0^(π/4) log_e (1 + tan(π/4 - x))dx`,
Using `int_0^a f(x)dx = int_0^a f(a - x)dx`
`\implies` I = `int_0^(π/4) log_e (1 + (1 - tanx)/(1 + tanx))dx`
= `int_0^(π/4) log_e (2/(1 + tanx))dx`
= `int_0^(π/4) log_e 2dx - I` ...(Using ...(i))
`\implies` 2I = `π/4 log_e 2`
`\implies` I = `π/8 log_e 2`.
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2} log(tanx)dx` = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^1|3x - 1|dx` equals ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`