Advertisements
Advertisements
प्रश्न
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
उत्तर
We have I = `int_0^(pi/2) (sin^2x)/(sinx + cosx) "d"x`
= `int_0^(pi/2) (sin^2(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x)) "d"x` ....(By P4)
⇒ I = `int_0^(pi/2) (cos^2x)/(sinx + cosx) "d"x`
Thus, we get 2I = `1/sqrt(2) int_0^(pi/2) ("d"x)/(cos(x - pi/4))`
= `1/sqrt(2) int_0^(pi/2) sec(x - pi/2) "d"x`
= `1/sqrt(2) [log(sec(x - pi/4) + tan(x - pi/4))]_0^(pi/2)`
= `1/sqrt(2)[log(sec pi/4 + tan pi/4) - log sec(- pi/4) + tan(- pi/4)]`
= `1/sqrt(2) [log(sqrt(2) + 1) - log(sqrt(2) - 1)]`
= `1/sqrt(2) log|(sqrt(2) + 1)/(sqrt(2) - 1)|`
= `1/sqrt(2) log((sqrt(2) - 1)^2/1)`
= `2/sqrt(2) log(sqrt(2) + 1)`
Hence I = `1/sqrt(2) log(sqrt(2) + 1)`.
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^2 e^x dx` = ______.
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`