हिंदी

Show that ∫0π2sin2xsinx+cosx=12log(2+1) - Mathematics

Advertisements
Advertisements

प्रश्न

Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`

योग

उत्तर

We have I = `int_0^(pi/2) (sin^2x)/(sinx + cosx)  "d"x`

= `int_0^(pi/2) (sin^2(pi/2 - x))/(sin(pi/2 - x) + cos(pi/2 - x)) "d"x`  ....(By P4)

⇒ I = `int_0^(pi/2) (cos^2x)/(sinx + cosx) "d"x`

Thus, we get 2I = `1/sqrt(2)  int_0^(pi/2)  ("d"x)/(cos(x - pi/4))`

= `1/sqrt(2) int_0^(pi/2) sec(x - pi/2) "d"x`

= `1/sqrt(2) [log(sec(x - pi/4) + tan(x - pi/4))]_0^(pi/2)`

= `1/sqrt(2)[log(sec  pi/4 + tan  pi/4) - log sec(- pi/4) + tan(- pi/4)]`

= `1/sqrt(2) [log(sqrt(2) + 1) - log(sqrt(2) - 1)]`

= `1/sqrt(2) log|(sqrt(2) + 1)/(sqrt(2) - 1)|`

= `1/sqrt(2) log((sqrt(2) - 1)^2/1)`

= `2/sqrt(2) log(sqrt(2) + 1)`

Hence I = `1/sqrt(2) log(sqrt(2) + 1)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Solved Examples [पृष्ठ १५५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Solved Examples | Q 17 | पृष्ठ १५५

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_0^2 e^x dx` = ______.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×