Advertisements
Advertisements
प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
उत्तर
`LHS=int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx.........(1)`
Substitute x = a + t in the second integral
dx=dt
When x = a, t = 0.
When x = 2a, t = a.
`thereforeint_a^(2a)f(x)dx=int_0^af(a+t)dt`
`=int_0^af(a+(a-t))dt (therefore int_0^af(x)dx=int_0^a f(a-x)dx)`
`=int_0^af(2a-t)dt`
`int_a^(2a)f(x)dx=int_0^af(2a-x)dx (therefore int_0^af(t)dt=int_0^af(x)dx)`
Using the above in (1), we get
`int_0^(2a)f(x)dx=int_0^af(x)dx+int_a^(2a)f(x)dx`
`=int_0^af(x)dx+int_0^af(2a-x)dx=RHS ("Proved")`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^3 x^2*log x "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`