हिंदी

The value of π∫0π4(sin2x)dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

The value of `int_0^(π/4) (sin 2x)dx` is ______.

विकल्प

  • 0

  • 1

  • `1/2`

  • `-1/2`

MCQ
रिक्त स्थान भरें

उत्तर

The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.

Explanation:

`int_0^(π/4) (sin 2x)dx`

Let u = 2x

If x = 0 then, u = 0

and x = `π/4` then u = `π/2`.

`\implies` du = 2 dx

`1/2 int_0^(π/2) sin u  du = -1/2 [cos u]_0^(π/2)`

= `-1/2 [0 - 1]`

= `1/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Delhi Set 2

संबंधित प्रश्न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


Evaluate `int_1^3 x^2*log x  "d"x`


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×