Advertisements
Advertisements
प्रश्न
The value of `int_0^(π/4) (sin 2x)dx` is ______.
विकल्प
0
1
`1/2`
`-1/2`
उत्तर
The value of `int_0^(π/4) (sin 2x)dx` is `underlinebb(1/2)`.
Explanation:
`int_0^(π/4) (sin 2x)dx`
Let u = 2x
If x = 0 then, u = 0
and x = `π/4` then u = `π/2`.
`\implies` du = 2 dx
`1/2 int_0^(π/2) sin u du = -1/2 [cos u]_0^(π/2)`
= `-1/2 [0 - 1]`
= `1/2`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_"a"^"b" "f"(x) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`