Advertisements
Advertisements
प्रश्न
`int_a^b f(x)dx` = ______.
विकल्प
`int_b^a f(x)dx`
`-int_a^b f(x)dx`
`-int_b^a f(x)dx`
`int_b^a f(x)dx`
उत्तर
`int_a^b f(x)dx` = `bb(underline(-int_b^a f(x)dx))`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/2} cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`