हिंदी

By using the properties of the definite integral, evaluate the integral: ∫-π2π2sin2x dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`

योग

उत्तर

Let`I = int_(-pi//2)^(pi//2)  sin^2 x  dx`

`= 2 int_0^(pi//2)  sin^2 x  dx`   ...(i)   ...(∵ sin2 x is a function)

Then `I = 2 int_0^(pi//2)  sin^2  (pi/2 - x)  dx`

`= int_0^(pi//2) cos^2 x  dx`  ...(ii)    `[because int_0^a f(x) = int_0^a  f(a - x)  dx]`

On adding equations (i) and (ii)

`2I = 2 int_0^(pi//2) (sin^2  x + cos^2   x)  dx`

`2I = 2 int_0^(pi//2)  1 dx`

`=> 2I = 2 [x]_0^(pi//2)`

`=> 2I = 2 xx pi/2`

Hence, `I = pi/2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 11 | पृष्ठ ३४७

संबंधित प्रश्न

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_"a"^"b" "f"(x)  "d"x` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^1 (1 - x)^5`dx = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


Which of the following is true?


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×