Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
उत्तर
Let`I = int_(-pi//2)^(pi//2) sin^2 x dx`
`= 2 int_0^(pi//2) sin^2 x dx` ...(i) ...(∵ sin2 x is a function)
Then `I = 2 int_0^(pi//2) sin^2 (pi/2 - x) dx`
`= int_0^(pi//2) cos^2 x dx` ...(ii) `[because int_0^a f(x) = int_0^a f(a - x) dx]`
On adding equations (i) and (ii)
`2I = 2 int_0^(pi//2) (sin^2 x + cos^2 x) dx`
`2I = 2 int_0^(pi//2) 1 dx`
`=> 2I = 2 [x]_0^(pi//2)`
`=> 2I = 2 xx pi/2`
Hence, `I = pi/2`
APPEARS IN
संबंधित प्रश्न
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^1 (1 - x)^5`dx = ______.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_-1^1x^2/(1+x^2) dx=` ______.
Which of the following is true?
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`