Advertisements
Advertisements
प्रश्न
Find `dy/dx, if y = cos^-1 ( sin 5x)`
उत्तर
`y = cos^-1 ( sin 5x )`
`y = cos^-1 [ cos( π/2 - 5x )]`
∴ `y = π/2 - 5x`
Diff.w.r.t.x.
`dy/dx = 0 - 5 xx 1`
`dy/dx = - 5`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^2 e^x dx` = ______.
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`