Advertisements
Advertisements
प्रश्न
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
उत्तर
Let I = `int (sec^2 x)/(tan^2 x + 4)` dx
Put tan x = t
`sec^2 x dx = dt`
I = `int dt/[ t^2 + 2^2 ]`
I = `1/2 tan^-1 (t/2) + c`
`( ∴ int 1/[ x^2 + a^2] dx = 1/a tan^-1 x/a + c)`
I = `1/2 tan^-1(tan x/2) + c`
APPEARS IN
संबंधित प्रश्न
find dy/dx if x=e2t , y=`e^sqrtt`
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
Derivative of x2 w.r.t. x3 is ______.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.