Advertisements
Advertisements
प्रश्न
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.
विकल्प
0.00
1.00
2.00
3.00
MCQ
रिक्त स्थान भरें
उत्तर
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is 1.00.
Explanation:
f'(x) = `(dy)/(dx) = (e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))`
∴ `lim_(θ→θ)f^'(x) = lim_(θ→θ)(e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))` = 1
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?