English

Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of θlimθ→0f'(x) is -

Advertisements
Advertisements

Question

Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.

Options

  • 0.00

  • 1.00

  • 2.00

  • 3.00

MCQ
Fill in the Blanks

Solution

Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is 1.00.

Explanation:

f'(x) = `(dy)/(dx) = (e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))`

∴ `lim_(θ→θ)f^'(x) = lim_(θ→θ)(e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))` = 1

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×