Advertisements
Advertisements
प्रश्न
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.
पर्याय
0.00
1.00
2.00
3.00
MCQ
रिकाम्या जागा भरा
उत्तर
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is 1.00.
Explanation:
f'(x) = `(dy)/(dx) = (e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))`
∴ `lim_(θ→θ)f^'(x) = lim_(θ→θ)(e^sinθ(1 + θcosθ))/(e^θ(sinθ + cosθ))` = 1
shaalaa.com
या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?