Advertisements
Advertisements
प्रश्न
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
उत्तर
`x=α sin 2t(1+cos 2t)`
`⇒x=α sin 2t+α/2×2 sin 2tcos 2t`
`⇒x=α sin 2t+α/2 sin 4t`
Differentiating both sides w.r.t. t, we get
`dx/dt=α cos2t xx 2+α/2 cos4txx4`
`⇒dx/dt=2α(cos2t+cos4t)`
`⇒dx/dt=2α(cos2t+2cos^2 2t−1)`
`⇒dx/dt=2α(cos2t+1)(2cos2t−1)`
Now,
`y=β cos2t(1−cos2t)`
`⇒y=β cos2t−β cos^2 2t`
Differentiating both sides w.r.t. t, we get
`dy/dt=−β sin2t xx 2+β xx 2cos2t xx sin2txx2`
`⇒dy/dt=−2β sin2t+4β cos2t.sin2t`
`⇒dy/dt=2β sin2t(2cos2t−1)`
We know
`dy/dx=(dy/dt)/(dx/dt)`
`=(2α(cos2t+1)(2cos2t−1))/(dy/dt=2β sin2t(2cos2t−1))`
`=(βsin2t)/(α(cos2t+1))`
`=(βxx2sintcost)/(αxx2cos^2t)`
`=β/αtant`
APPEARS IN
संबंधित प्रश्न
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
Differentiate `x/sinx` w.r.t. sin x
Derivative of x2 w.r.t. x3 is ______.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.