Advertisements
Advertisements
प्रश्न
Differentiate `x/sinx` w.r.t. sin x
उत्तर
Let y = `x/sinx` and z = sin x.
Differentiating both the parametric functions w.r.t. x
`"dy"/"dx" = (sin x * "d"/"dx" (x) - x * "d"/"dx" (sin x))/(sin x)^2`
= `(sin x * 1 - x * cos x)/(sin^2x)`
= `(sinx - x cos x)/(sin^2x)`
`"dz"/"dx"` = cos x
∴ `"dy"/"dz" = ("dy"/"dx")/("dz"/"dx")`
= `((sinx - x cos x)/sin^2x)/cosx`
= `(sinx - xcosx)/(sin^2x cos x)`
= `sinx/(sin^2x cosx) - (xcosx)/(sin^2x cosx)`
= `tanx/(sin^2x) - x/(sin^2x)`
= `(tanx - x)/(sin^2x)`
Hence, `"dy"/"dz" = (tanx - x)/(sin^2x)`.
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If x=at2, y= 2at , then find dy/dx.
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Derivative of x2 w.r.t. x3 is ______.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.