हिंदी

Differentiate xsinx w.r.t. sin x - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `x/sinx` w.r.t. sin x

योग

उत्तर

Let y = `x/sinx` and z = sin x.

Differentiating both the parametric functions w.r.t. x

`"dy"/"dx" = (sin x * "d"/"dx" (x) - x * "d"/"dx" (sin x))/(sin x)^2`

= `(sin x * 1 - x * cos x)/(sin^2x)`

= `(sinx - x cos x)/(sin^2x)`

`"dz"/"dx"` = cos x

∴ `"dy"/"dz" = ("dy"/"dx")/("dz"/"dx")`

= `((sinx - x cos x)/sin^2x)/cosx`

= `(sinx - xcosx)/(sin^2x cos x)`

= `sinx/(sin^2x cosx) - (xcosx)/(sin^2x cosx)`

= `tanx/(sin^2x) - x/(sin^2x)`

= `(tanx - x)/(sin^2x)`

Hence, `"dy"/"dz" = (tanx - x)/(sin^2x)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 52 | पृष्ठ १११

संबंधित प्रश्न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Derivative of x2 w.r.t. x3 is ______.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×