हिंदी

If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx. x=a(cost+logtan t2),y= asint - Mathematics

Advertisements
Advertisements

प्रश्न

If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x=a(cost+logtan t2),y= asint

योग

उत्तर

x = a (cost+logtan t2)y=asint

dxdt=a[-sint+1tan(t2)ddt tan t2]

=a[-sint+1sint]&dydt=acost

=dydt=dydt÷dxdt

=acostacos2tsint

= tan t

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity and Differentiability - Exercise 5.6 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 5 Continuity and Differentiability
Exercise 5.6 | Q 8 | पृष्ठ १८१

संबंधित प्रश्न

If  log10(x3-y3x3+y3)=2then show that dydx=-99x2101y2


If x=at2, y= 2at , then find dy/dx.


If x=a(t-1t),y=a(t+1t), then show that dydx=xy


If ax2+2hxy+by2=0 , show that d2ydx2=0


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find dydx

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that dydx=βαtan t


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find dydx

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)32

(B) 32

(C) 12

(D) -32


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx

x=2at2,y=at4


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x=4t,y=4y


If x and y are connected parametrically by the equation without eliminating the parameter, find dydx.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x=sin3tcos2t, y =cos3tcos2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x = a sec θ, y = b tan θ


IF y=esin-1x and z=e-cos-1x, prove that dydz=ex/2


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


x = t+1t, y = t-1t


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = 2t1+t2, tan y = 2t1-t2


x = 1+logtt2, y = 3+2logtt


If x = ecos2t and y = esin2t, prove that dydx=-ylogxxlogy


If x = a sin θ and  y = b cos θ,then d2ydx2 is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of 22 units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then A1A2 equals


If x = a[cosθ+logtan θ2], y = asinθ then dydx = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of limθ0f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.