Advertisements
Advertisements
प्रश्न
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
उत्तर
`x=asin 2t(1+cos2t) `
`y=bcos2t(1−cos2t)`
We know that
`dy/dx=dy/dt xx dt/dx`
`y=bcos2t(1−cos2t)`
`⇒dy/dt=−2bsin2t(1−cos2t)+ (2bcos2t sin2t)`
`⇒dy/dt=−2bsin2t+2bsin2t cos2t+2bcos2t sin2t`
`⇒dy/dt=−2bsin2t+4bsin2t cos2t`
`⇒dy/dt=2b(sin4t−sin2t)`
`x=asin2t(1+cos2t)`
`⇒dx/dt=2acos2t(1+cos2t)−2asin2t sin2t`
`⇒dx/dt=2acos2t+2acos^2 2y−2asin^2 2t`
`⇒dx/dt=2a(cos2t+cos4t)`
`∴(dy/dx)_(t=π/4)=b/a ((sin4(π/4)−sin2(π/4))/(cos2(π/4)+cos4(π/4)))=b/axx((0−1)/(0−1))=b/a`
संबंधित प्रश्न
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
Differentiate `x/sinx` w.r.t. sin x
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.