Advertisements
Advertisements
Question
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
Solution
`x=asin 2t(1+cos2t) `
`y=bcos2t(1−cos2t)`
We know that
`dy/dx=dy/dt xx dt/dx`
`y=bcos2t(1−cos2t)`
`⇒dy/dt=−2bsin2t(1−cos2t)+ (2bcos2t sin2t)`
`⇒dy/dt=−2bsin2t+2bsin2t cos2t+2bcos2t sin2t`
`⇒dy/dt=−2bsin2t+4bsin2t cos2t`
`⇒dy/dt=2b(sin4t−sin2t)`
`x=asin2t(1+cos2t)`
`⇒dx/dt=2acos2t(1+cos2t)−2asin2t sin2t`
`⇒dx/dt=2acos2t+2acos^2 2y−2asin^2 2t`
`⇒dx/dt=2a(cos2t+cos4t)`
`∴(dy/dx)_(t=π/4)=b/a ((sin4(π/4)−sin2(π/4))/(cos2(π/4)+cos4(π/4)))=b/axx((0−1)/(0−1))=b/a`
RELATED QUESTIONS
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `x/sinx` w.r.t. sin x
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.