Advertisements
Advertisements
Question
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Solution
x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t)
We need to find dy/dx :
`dy/dx=(dy/dt)/(dx/dt)`
Let us find dx/dt:
x = cos t (3 – 2 cos2 t)
`dx/dt=cost(4costsint)+(3-2cos^2t)(-sint)`
`=>dx/dt=-3sint+4cos^2tsint+2cos^2tsint`
Let us find dy/dx:
y = sin t (3 – 2 sin2 t)
`dy/dt=sint(-4sintcost)+(3-2sin^2t)(cost)`
`=>dy/dt=3cost-4sin^2tcost-2sin^2tcost`
thus,
`dy/dx=(3cost-4sin^2tcost-2sin^2tcost)/(-3sint+4cos^2tsint+2cos^2tsint)`
`=>dy/dx=(3cost-6sin^2tcost)/(-3sint+6cos^2tsint)`
`=>dy/dx=(3cost(1-2sin^2t))/(-3sint(1-2cos^2t))`
`=>dy/dx=(3cost(1-2sin^2t))/(3sint(2cos^2t-1))`
`=>dy/dx=cost/sint [because 2cos^2t-1=1-2sin^2t]`
`=>dy/dx=cott`
`=>(dy/dx)_(t=pi/4)=cot(pi/4)=1`
APPEARS IN
RELATED QUESTIONS
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.