English

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π. - Mathematics

Advertisements
Advertisements

Question

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.

Solution

x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t)

We need to find dy/dx :

`dy/dx=(dy/dt)/(dx/dt)`

Let us find dx/dt:

x = cos t (3 – 2 cos2 t)

`dx/dt=cost(4costsint)+(3-2cos^2t)(-sint)`

`=>dx/dt=-3sint+4cos^2tsint+2cos^2tsint`

Let us find dy/dx:

y = sin t (3 – 2 sin2 t)

`dy/dt=sint(-4sintcost)+(3-2sin^2t)(cost)`

`=>dy/dt=3cost-4sin^2tcost-2sin^2tcost`

thus,

`dy/dx=(3cost-4sin^2tcost-2sin^2tcost)/(-3sint+4cos^2tsint+2cos^2tsint)`

`=>dy/dx=(3cost-6sin^2tcost)/(-3sint+6cos^2tsint)`

`=>dy/dx=(3cost(1-2sin^2t))/(-3sint(1-2cos^2t))`

`=>dy/dx=(3cost(1-2sin^2t))/(3sint(2cos^2t-1))`

`=>dy/dx=cost/sint [because 2cos^2t-1=1-2sin^2t]`

`=>dy/dx=cott`

`=>(dy/dx)_(t=pi/4)=cot(pi/4)=1`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 3

RELATED QUESTIONS

find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


Differentiate `x/sinx` w.r.t. sin x


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×