Advertisements
Advertisements
Question
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
Solution
We have,
x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 - cos 2t)
`therefore "dx"/"dt" = "a"["sin" "2t" ."d"/"dt" (1 + "cos" "2t") + (1 + "cos" 2"t") "d"/"dt" "sin" "2t"]`
`= "a" ["sin" 2"t" . (-2 "sin" "2t") + (1 + "cos" "2t") . 2 "cos" "2t"]`
`= -2 "a" "sin"^2 "2t" + 2"a" "cos" 2"t" (1 + "cos" "2t")`
`=> "dx"/"dt" = -2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")]` .....(1)
and `"dy"/"dt" = "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") + (1 - "cos" "2t") . "d"/"dt" "cos" "2t" . "d"/"dt" "cos" "2t"]`
`= "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") (-2 "sin " "2t")]`
`= "2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"]`
`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = ("2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"])/(-2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")])`
`=> ("dy"/"dx")_("t" = pi/4) = - "b"/"a" ["sin" pi/2 "cos" pi/2 - (1 - "cos" pi/2) "sin" pi/2]/["sin"^2 pi/2 - "cos" pi/2 (1 + "cos" pi/2)]`
`= -"b"/"a" . (0-1)/(1 - 0) = "b"/"a"`
APPEARS IN
RELATED QUESTIONS
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.