English

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of dydxat t = π4 - Mathematics

Advertisements
Advertisements

Question

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`

Sum

Solution

We have,

x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 - cos 2t)


`therefore "dx"/"dt" = "a"["sin" "2t" ."d"/"dt" (1 + "cos"  "2t") + (1 + "cos"  2"t") "d"/"dt"  "sin" "2t"]`


`= "a"  ["sin" 2"t" . (-2 "sin"  "2t") + (1 + "cos"  "2t") . 2  "cos"  "2t"]`


`= -2 "a"  "sin"^2  "2t" + 2"a"  "cos" 2"t" (1 + "cos"  "2t")`


`=> "dx"/"dt" = -2"a" ["sin"^2  "2t" - "cos"  "2t" (1 + "cos"  "2t")]`    .....(1)


and `"dy"/"dt" = "b" ["cos"  "2t" . (2  "sin"  "2t") + (1 - "cos"  "2t") + (1 - "cos"  "2t") . "d"/"dt"  "cos"  "2t" . "d"/"dt" "cos"  "2t"]`


`= "b"  ["cos"  "2t" . (2 "sin"  "2t") + (1 - "cos"  "2t") (-2 "sin " "2t")]`


`= "2b"  ["sin" "2t" . "cos"  "2t" -  (1 - "cos"  "2t")  "sin" "2t"]`


`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = ("2b" ["sin" "2t" . "cos" "2t" - (1 - "cos"  "2t") "sin" "2t"])/(-2"a" ["sin"^2  "2t" - "cos"  "2t" (1 + "cos"  "2t")])`


`=> ("dy"/"dx")_("t" = pi/4) = - "b"/"a" ["sin" pi/2 "cos" pi/2 - (1 - "cos" pi/2) "sin" pi/2]/["sin"^2 pi/2 - "cos" pi/2 (1 + "cos" pi/2)]`


`= -"b"/"a" . (0-1)/(1 - 0) = "b"/"a"`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Delhi Set 1

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `x/sinx` w.r.t. sin x


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×