Advertisements
Advertisements
प्रश्न
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
उत्तर
We have,
x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 - cos 2t)
`therefore "dx"/"dt" = "a"["sin" "2t" ."d"/"dt" (1 + "cos" "2t") + (1 + "cos" 2"t") "d"/"dt" "sin" "2t"]`
`= "a" ["sin" 2"t" . (-2 "sin" "2t") + (1 + "cos" "2t") . 2 "cos" "2t"]`
`= -2 "a" "sin"^2 "2t" + 2"a" "cos" 2"t" (1 + "cos" "2t")`
`=> "dx"/"dt" = -2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")]` .....(1)
and `"dy"/"dt" = "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") + (1 - "cos" "2t") . "d"/"dt" "cos" "2t" . "d"/"dt" "cos" "2t"]`
`= "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") (-2 "sin " "2t")]`
`= "2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"]`
`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = ("2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"])/(-2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")])`
`=> ("dy"/"dx")_("t" = pi/4) = - "b"/"a" ["sin" pi/2 "cos" pi/2 - (1 - "cos" pi/2) "sin" pi/2]/["sin"^2 pi/2 - "cos" pi/2 (1 + "cos" pi/2)]`
`= -"b"/"a" . (0-1)/(1 - 0) = "b"/"a"`
APPEARS IN
संबंधित प्रश्न
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals