मराठी

If x and y are connected parametrically by the equation without eliminating the parameter, find dydx. x = cos θ – cos 2θ, y = sin θ – sin 2θ - Mathematics

Advertisements
Advertisements

प्रश्न

If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ

बेरीज

उत्तर

Given, x `= cos theta - cos 2 theta`  and `y = sin theta - sin 2 theta`

x `= cos theta - cos 2 theta` 

Differentiating both sides with respect to θ,

`dx/(d theta) = - sin theta - (- sin 2  theta) d/(d theta) (2  theta) = - sin theta + 2 sin 2  theta`

and  y = `sin theta -  sin 2  theta)`

`therefore dy/(d theta) = cos theta -  cos 2  theta  d/(d"theta) (2  theta) = cos theta - 2 cos 2  theta`

Hence, `dy/dx = (dy/(d theta))/(dx/(d theta))`

`= (cos theta - 2 cos 2 theta)/(- sin theta + 2 sin 2 theta)`

`= (cos theta - 2 cos 2 theta)/(- (sin theta - 2 sin 2 theta))`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity and Differentiability - Exercise 5.6 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 5 Continuity and Differentiability
Exercise 5.6 | Q 5 | पृष्ठ १८१

संबंधित प्रश्‍न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×