मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If Y = Sin -1 ((8x)/(1 + 16x^2)), Find (Dy)/(Dx) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`

बेरीज

उत्तर

y = sin-1  `((8x)/(1 + 16x^2))`

y = sin-1  `( (2(4x))/(1 + (4x)^2))`

Put 4x = tan θ `therefore` = tan-1 (4x)

y = sin-1 `((2 tan θ)/(1 + tan^2 θ))`

y = sin-1 (sin 2θ)

y = 2θ

y = 2 tan-1 (4x)

`(dy)/(dx) = 2/(1 + (4x^2)` . 4

`(dy)/(dx) = 8/(1 + 16x^2)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (July) Set 1

APPEARS IN

संबंधित प्रश्‍न

find dy/dx if x=e2t , y=`e^sqrtt`


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×