English

If Y = Sin -1 ((8x)/(1 + 16x^2)), Find (Dy)/(Dx) - Mathematics and Statistics

Advertisements
Advertisements

Question

If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`

Sum

Solution

y = sin-1  `((8x)/(1 + 16x^2))`

y = sin-1  `( (2(4x))/(1 + (4x)^2))`

Put 4x = tan θ `therefore` = tan-1 (4x)

y = sin-1 `((2 tan θ)/(1 + tan^2 θ))`

y = sin-1 (sin 2θ)

y = 2θ

y = 2 tan-1 (4x)

`(dy)/(dx) = 2/(1 + (4x^2)` . 4

`(dy)/(dx) = 8/(1 + 16x^2)`

shaalaa.com
  Is there an error in this question or solution?
2016-2017 (July) Set 1

APPEARS IN

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x=at2, y= 2at , then find dy/dx.


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×