English

X = eeθ(θ+1θ), y= ee-θ(θ-1θ) - Mathematics

Advertisements
Advertisements

Question

x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`

Sum

Solution

Given that, x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`

Differentiating both the parametric functions w.r.t. θ

`"dx"/("d"theta) = "e"^theta(1 - 1/theta^2) + (theta + 1/theta)*"e"^theta`

`"dx"/("d"theta) = "e"^theta (1 - 1/theta^2 + theta + 1/theta)`

⇒ `"e"^theta ((theta^2 - 1 + theta^3 + theta)/theta^2)`

= `("e"^theta(theta^3 + theta^2 + theta - 1))/theta^2`

y = `"e"^-theta(theta - 1/theta)`

`"dy"/("d"theta) = "e"^-theta(1 + 1/theta^2) + (theta - 1/theta) * (-"e"^-theta)`

`"dy"/("d"theta) = "e"^-theta (1 + 1/theta^2 - theta + 1/theta)`

⇒ `"e"^-theta ((theta^2 + 1 - theta^3 + theta)/theta^2)`

= `"e"^-theta ((-theta^3 + theta^2 + theta + 1))/theta^2`

∴ `"dy"/"dx" = (("dy")/("d"theta))/(("d"x)/("d"theta))`

= `("e"^-theta ((-theta^3 + theta^2 + theta + 1)/theta^2))/("e"^theta ((theta^3 + theta^2 + theta + 1)/theta^2))`

= `"e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`

Hence, `"dy"/"dx" = "e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 45 | Page 110

RELATED QUESTIONS

If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×