Advertisements
Advertisements
Question
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
Solution
Let y = `tan^-1 ((sqrt(1 + x^2) - 1)/x)` and z = tan–1x.
Put x = tan θ.
∴ y = `tan^-1 ((sqrt(1 + tan^2 theta) - 1)/tan theta)` and z = tan–1(tan θ) = θ
⇒ `tan ((sqrt(sec theta) - 1)/tan) = tan^-1 ((sec theta - 1)/tan theta)`
= `tan^-1 ((1/(cos theta) - 1)/((sin theta)/(cos theta))) = tan^-1 ((1 - cos theta)/sin theta)`
⇒ `tan^-1 ((2 sin^2 theta/2)/(2 sin theta /2 cos theta/2)) = tan^-1 ((sin theta/2)/(cos theta/2))`
⇒ y = `tan^-1 (tan theta/2)`
⇒ y = `theta/2`
Differentiating both parametric functions w.r.t. θ
`"dy"/("d"theta) = 1/2 * "d"/("d"theta) (theta)` and `"dz"/("d"theta) = "d"/("d"theta) (theta)`
= `1/2 * 1`
= `1/2` and `"dz"/("d"theta)` = 1
∴ `"dy"/"dz" = ("dy"/("d"theta))/("dz"/("d"theta))`
= `(1/2)/1`
= `1/2`.
APPEARS IN
RELATED QUESTIONS
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.