English

Find the value of dy/dx at θ=pi/4 if x=ae^θ (sinθ-cosθ) and y=ae^θ(sinθ+cosθ) - Mathematics

Advertisements
Advertisements

Question

Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`

Solution

`y=ae^theta(sintheta+cos theta)`

`x=ae^theta (sintheta-costheta)`

Differentiating y with respect to θ on both the sides, we get:

`dy/(d theta)=ae^theta(costheta-sintheta)+ae^theta(sintheta+costheta)dy/(d theta)`

`=2ae^theta cos theta`

Differentiating x with respect to θ on both the sides, we get:

`dx/(d theta)=ae^theta(costheta+sintheta)+ae^theta(sintheta-costheta)dx/(d theta)`

`=2ae^theta sin theta`

Now

`dy/dx=(dy/(d theta))/(dx/(d theta))=(2ae^theta cos theta)/(2ae^theta sin theta)=cot theta`

`(dy/dx)_(theta=pi/4)=cot(pi/4)=1`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) All India Set 1

RELATED QUESTIONS

If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×