English

If X = F(T) and Y = G(T) Are Differentiable Functions of , T - Mathematics and Statistics

Advertisements
Advertisements

Question

If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.

Sum

Solution

x = a cos2 t and y = a sin2 t

Differentiating x and y with respect to t, we get

`"dx"/"dt" = "a cos"^2"t", "dy"/"dt" = "a sin"^2 "t"`

`=> "dx"/"dt" = "2a"  "cos t" "d"/"dt" "cos t", "dy"/"dt" = "2a sin t" "d"/"dt" "sin t"`

`=> "dx"/"dt" = "2a"  "cos t" xx (- "sin t"), "dy"/"dt" = "a" (2"sin t" xx "cos t")("d"/"dx" ("at"^2) = 2"at" "d"/"dx" "t")`

`=> "dx"/"dt" = "- 2a"  "cos t"  "sin t", "dy"/"dt" = "2a"  "sin t cos" ("d"/"dx" ("sin" theta) = "cos" theta "and" "d"/"dx" ("cos" theta) = - "sin" theta)`

`=> "dx"/"dt" = - "a"  "sin 2t", "dy"/"dt" = "a"  "sin"  "2t"  ("sin" 2theta = 2 "sin" theta  "cos" theta)`

Therefore

`"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`, where `"dx"/"dt" ≠ 0`

`"dy"/"dx" = ("a sin 2t")/(- "a sin 2t")`

`=> "dy"/"dx" = - 1`

shaalaa.com
  Is there an error in this question or solution?
2018-2019 (February) Set 1

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


The cost C of producing x articles is given as C = x3-16x2 + 47x.  For what values of x, with the average cost is decreasing'?  


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


Differentiate `x/sinx` w.r.t. sin x


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×